1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

A smart carbon tax: the silver bullet for the (just) energy transition?

There is a broad consensus among economists that, globally, over time, reaching net zero greenhouse gas emissions by 2050 will cost less than not reaching net zero.[1] In that very broad, long-term, high-level sense, it is clear that there is no conflict between carbon neutrality and economic interests. But if everybody thought it was already in their economic interests to aim for net zero today, we would probably not be so far off track from achieving that goal as we currently are.[2]   

Researchers working within the framework set by the Intergovernmental Panel on Climate Change (IPCC) have mapped out four indicative pathways to net zero.[3] They all involve at least halving global consumption of fossil fuels by 2040. That is not quite the future that most oil majors, and governments with a stake in the industry, seem to be planning for.[4] Others argue that net zero in 2050 is compatible with fossil fuels still dominating the global energy sector at that time, but that this would depend on massive shifts in investment – for example, into new technology to reduce the carbon footprint of fossil fuel extraction, hydrocarbon supply chains and use of fossil fuels. The majority of the industry is as yet not visibly committed to such shifts.[5]

To persuade people to take action that seems to be against their economic interests, at least in the short term, you need to change the balance of incentives.

Again, the economists have a straightforward answer: you put a price on carbon. You make it more expensive to produce and/or consume fossil fuels and products with a heavy carbon footprint. People then pay up front for the otherwise unpriced damage caused by their emissions, which means that they have a reason to choose lower carbon products and forms of energy.

There is no shortage of support for the principle of carbon pricing, which has been endorsed by royalty, the European Commission and senior bankers, to name but a few.[6] However, in practice, existing carbon price mechanisms have had limited effect, and there are serious risks in seeking to decarbonise with policy instruments that could impose significant costs on those least able to afford them. Any tax based on consumption risks having a regressive effect, and people with proportionally more carbon-intensive lifestyles often lack the financial means to switch to lower carbon options. The gilets jaunes protests in France began with an increase in carbon taxes.[7]

Carbon pricing may take the form of a straight tax on emissions, or of an emissions trading scheme. The former is arguably the better approach. For example, setting a tax rate is not always easy, but it is easier to make adjustments to a tax than to a market mechanism, where it can be difficult to recover from an initial miscalculation of the optimum number of emissions allowances to issue at the outset, as in the case of the EU Emissions Trading Scheme (EU ETS).

The ideal carbon tax would be economy-wide, and have three further key features. 

  • The price of emissions would start considerably higher than in most current carbon pricing schemes, and increase over time in a carefully calibrated way.[8]  
  • To ensure popular support, government would pay back some or all of the tax receipts in the form of a “carbon dividend” in a fiscally redistributive way.[9]
  • To make it possible to start with a national, rather than a global version of the tax, and to avoid exporting the taxing country’s emissions to countries without a carbon tax, it would be necessary to charge a “border carbon adjustment” tariff on goods imported from jurisdictions with no equivalent tax.

Such an approach has plenty of heavyweight intellectual support.

  • Just over a year ago, the Wall Street Journal carried a self-styled “largest public statement of economists in history” in which no fewer than 3,558 US economists espoused something along these lines that was proposed from a US perspective. This is the “Baker-Schultz” plan, re-branded in February 2020 as the “Bipartisan Climate Roadmap”.[10]
  • In October 2017, leading UK regulatory economist Dieter Helm put a carbon tax at the heart of his report to the UK government on how to address the rising cost of energy in the context of its climate change policy goals.[11]
  • In July 2018, the UK think tank Policy Exchange produced The Future of Carbon Pricing: Implementing an independent carbon tax with dividends in the UK, with a foreword jointly authored by a former Labour Chancellor of the Exchequer and a former Conservative Foreign Secretary.[12]

Of course, any attempt to implement such a tax would need to address a great many issues, both in terms of high level design and practicalities.

  • Do you just tax fossil fuels, or do you also tax products in whose manufacture fossil fuels have been consumed? In the case of fossil fuels, at what point(s) in the chain between the upstream producer and the final downstream user should the tax be levied? For example, you could impose a tax on upstream hydrocarbon producers or refinery operators that was based just on the emissions from their activities, rather than from the presumed activities of end-users of refined petroleum products, such as electricity generators or motorists.
  • At whatever point(s) a tax is applied, at what rate should it be levied? What assumptions about the emissions intensity of downstream processing and/or use should underpin the calculation of that rate? How do you ensure that the imposition of the tax, and any increase in the rate, has the desired effect of incentivising changes in behaviour (i.e. shifts to lower carbon technology)? Will taxing the ultimate consumer more heavily incentivise the upstream or midstream operator to reduce emissions from flaring or fugitive methane? If I fill up my car with fuel from a retailer who promises to offset the emissions that my driving will cause, should I get a rebate on the tax element of my purchase?
  • Tax law has a natural tendency to become complicated. Take for example the Climate Change Levy (CCL) legislation, that supplements the EU ETS in UK domestic law. In outline, this is quite a simple scheme: electricity and certain fossil fuels are “taxable commodities” and a levy is charged on “taxable supplies” of them. But quite quickly, the desire to incentivise, protect, or discourage particular activities turns the scheme into an abstruse and intricate mesh of exemptions, exclusions, and exceptions from exemptions or exclusions.
  • Both fossil fuels and products manufactured using them are traded internationally, but carbon taxing is currently national (or in the case of the EU ETS, regional), and is likely to remain so for the foreseeable future. In order to encourage other countries to adopt similar regimes, and to stop its domestic industry being undercut until they have done so, a taxing country will want to impose a carbon border adjustment on imports. This may involve charging tax at a point further down the value chain than would be the case with domestic industry. For example: you apply a domestic carbon tax on electricity, which increases the costs of aluminium smelters, so you need to apply the carbon border adjustment to imports of aluminium from a country that does not levy a similar carbon tax on electricity or aluminium production.
  • But suppose there are two aluminium producers in the aluminium exporting country: one powered entirely by renewable energy, and the other by a coal-fired power station. And suppose that some of the aluminium that reaches the aluminium importing country arrives in the form of finished products. If two identical stepladders are imported, one made of “brown” aluminium and the other of “green” aluminium, the tariff charged on the latter should be lower.

This prompts some further reflections on the kind of system that is needed. 

  • To work well, our hypothetical carbon tax needs to be very granular. That means handling a lot of data, and mining that data for insights – for example, about how particular applications of the tax affect the behaviour of particular groups or economic sectors.
  • You will also need to be able to keep records. Suppose somebody is awarded a rebate but it turns out they should not have had it. Suppose you want to allow people to borrow against their future carbon dividends in order to invest in making their homes more energy efficient. You may well want to track supply chain emissions – including for the oil & gas industry itself.   
  • Very soon, you are looking at information flows that are too numerous and diverse to be managed by a central counterparty.
  • This points to a system that can facilitate large numbers of transactions automatically, within set parameters – in other words, smart contracts.
  • That system must be very secure, and capable of encouraging parties who do not have direct contact with each other to trust each other.
  • Above all, you need a system that records, in immutable form, every transaction that is made within it.

This sounds like a job for some kind of distributed ledger technology (sometimes, but strictly inaccurately, referred to by the generic label “blockchain”). No jurisdiction in the world has yet implemented the ideal version of a carbon tax. But if and when they do, it should arguably be a data-rich, deeply digitalised, regime that can be integrated with smartphones and the internet of things: capable of tracking individual products through the supply chain, and perhaps distinguishing between hydrocarbons from different sources on the basis of the emissions intensity of the processes by which they have been extracted, transported and refined.

The Policy Exchange paper referred to above highlights the role of “blockchain” in this regard. It also points out that the UK’s withdrawal from the EU provides it with a potential opportunity to strike out on a new course in terms of carbon pricing. Research by the UK energy regulator Ofgem shows that even the UK’s existing carbon pricing tools, the much-criticised EU ETS and its domestic supplement, the Carbon Price Support element of the CCL, have been the single most effective regulatory driver of decarbonisation in the UK power sector.[13]

However, a government consultation issued in May 2019 on the future of UK carbon pricing was essentially focused on how to replace the EU-derived existing regime with something similar but UK-only.[14] It made no reference to the kind of ideas put forward by Policy Exchange, the 3,558 US economists, or Prof. Helm as regards a carbon tax. It is to be hoped that the new government will be prepared to reconsider this approach and look seriously at some of those ideas.[15] At the same time, the UK government will need to think how to respond to the EU’s plans, as part of the European Green Deal proposals of the new European Commission President, Ursula von der Leyen,[16] to establish an EU border carbon adjustment to avoid “carbon leakage” through the importing of cheaper products of energy intensive industries from countries with weaker carbon emissions controls.[17]   

In the energy sector, distributed ledger technology, smart contracts and related innovations are not just of interest to wonkish proponents of better carbon pricing. Oil companies and others in the sector have a keen interest in all these developments, because they have the potential to save them huge amounts of money.[18]

  • By exploiting existing sub-surface data, upstream oil and gas players can make the exploration process less hit-and-miss by identifying good prospects and likely dry holes before drilling. Earlier this year, the UK Oil & Gas Authority released 130 terabytes of data about the North Sea. They think that making good use of this data could reduce exploration costs by 20%.[19] 
  • Using blockchain and smart contracts they can reduce the costs and cost-overruns of building new infrastructure – some would argue, by up to 50%.
  • There is potential to make upstream facilities operate more efficiently by making better use of all the data they gather.  Wood MacKenzie estimate that US shale producers could reduce operating expenses by 10% and add $25 billion of value by putting mature wells on smart production management systems.[20]
  • Physical oil and petroleum product trading can be made much more efficient by replacing the old paper-based trade finance system with a distributed ledger.[21]  

It is perfectly possible to find oil and gas industry veterans who are sceptical of these developments. But their reason is not that they doubt the technology. Their response tends to be more along the lines of: “It sounds great, but when the oil price is high, we don’t need to cut costs, and when it’s low, we have other things to worry about”.

However, a digitalised carbon tax could provide the constant, incremental pressure that is needed to get the industry to exploit the power of digitalisation to decarbonise.   

And the industry needs to do this, because it faces all sorts of other challenges. By some measures, its energy return on investment is declining.[22] It may become vulnerable to climate change litigation. It may face competition from lower carbon alternatives that are cheaper and more effective substitutes for what it offers than are currently available.[23] But if the industry saves costs, it will become less risky, and it will be more able to invest in areas where its expertise will be crucial, like hydrogen and carbon capture and storage, that can give it a longer-term future.

Bring on the smart carbon tax of the future, then, and everyone should be a winner. In the meantime, even if the fully digitalised and personalised kind of platform outlined above lies too far in the future to be relied on as the only way forward, there is still plenty of scope to make more widespread use of carbon pricing, at higher and therefore more incentivising levels, and with redistribution and carbon border adjustment elements – and there is a strong case for doing so urgently.

The author is extremely grateful to the World Energy Council (Austria) and the Organisation for Security and Co-operation in Europe for inviting him to speak on the subject of “carbon neutrality vs. economic interests” at the 2nd Vienna Energy Strategy Dialogue in November 2019 (which was themed around “The Impact of Big Data in Energy, Security and Society”). This article is a version of his contribution on that occasion.


[1] The proposition that, as regards climate change, mitigation of undesirable outcomes before they materialise is cheaper than adaptation to them once they have arrived, was authoritatively stated in the Stern Review of the Economics of Climate Change, commissioned by the UK government and published in 2006. The UK government’s independent advisory body on climate change, the Committee on Climate Change, found in its 2019 report recommending the adoption of a “net zero” target for UK greenhouse gas emissions in 2050 that this would not cost any more than the previous statutory target of an 80% reduction against 1990 levels (itself partly triggered by Stern’s conclusions).

[2] The gap between the emissions trajectories of current and announced policies and what is needed to avert unacceptable adverse impacts of climate change has been highlighted in many places, including the IPCC’s 2018 special report on Global Warming of 1.5ºC and the UN Environment Programme’s 2019 Emissions Gap Report.

[3] See page 90 of the Committee on Climate Change report on net zero for graphics and full citation.

[4] See for example The Production Gap Report (2019), produced by the Stockholm Environment Institute and others.

[5] See for example the International Energy Agency’s 2020 report, The Oil and Gas Industry in Energy Transitions, and a number of publications by consultancy Thunder Said Energy.

[6] See for example the article by Gillian Tett in the Financial Times, UK edition for 24 January 2020, “The world needs a Libor for carbon pricing”.

[7] See for example the article by Philip Stephens in the Financial Times, UK edition for 24 January 2020, “How populism will heat up the climate fight”.

[8] See the Report of the High-Level Commission on Carbon Prices chaired by Joseph Stiglitz and Nicholas Stern (Carbon Pricing Leadership Coalition, May 2017): https://www.carbonpricingleadership.org/report-of-the-highlevel-commission-on-carbon-prices. Among the Commission’s conclusions: “Countries may choose different instruments to implement their climate policies, depending on national and local circumstances and on the support they receive. Based on industry and policy experience, and the literature reviewed, duly considering the respective strengths and limitations of these information sources, this Commission concludes that the explicit carbon-price level consistent with achieving the Paris temperature target is at least US$40–80/tCO2 by 2020 and US$50–100/tCO2 by 2030, provided a supportive policy environment is in place.” (Emphasis added.)

[9] For an analysis of the different ways of implementing a “carbon dividend”, see D. Klenert, L. Mattauch, E. Combet, O. Edenhofer, C. Hepburn, R. Rafaty and N. Stern, “Making Carbon Pricing Work for Citizens”, Nature 8 (2018), 669-677.

[10] The “Economists’ Statement on Carbon Dividends” was signed by, amongst many others, 4 former Chairs of the Federal Reserve, 27 Nobel Laureate Economists and 15 Former Chairs of the Council of Economic Advisers. See now also https://clcouncil.org/Bipartisan-Climate-Roadmap.pdf.

[11] Helm’s report was commissioned by the then Secretary of State for Business, Energy and Industrial Strategy, Greg Clark. At the time of writing, the government had yet to issue a substantive response to it.

[12] See https://policyexchange.org.uk/wp-content/uploads/2018/07/The-Future-of-Carbon-Pricing.pdf.

[13] Ofgem, State of the Energy Market 2019, page 129 (figure 5.10).

[14] See https://www.gov.uk/government/consultations/the-future-of-uk-carbon-pricing.

[15] At the time of writing, a government response had not yet been issued in respect of the majority of this consultation.

[16] See https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.

[17] For commentary, see Sandbag’s report, The A-B-C of BCAs An overview of the issues around introducing Border Carbon Adjustments in the EU. The ultimate relationship between the UK as a whole and the EU ETS remains to be determined, but the agreement between the UK and the EU on the UK’s withdrawal from the EU requires the EU ETS rules to continue to be applied in Northern Ireland as part of the basis for continuing the operation of the Single Electricity Market on the island of Ireland. If the EU border carbon adjustment is implemented as part of the EU ETS regime, the UK may be under pressure to adopt a similar measure.

[18] For a general survey of the distributed ledger technology and its potential applications in the energy sector, see https://www.dentons.com/en/insights/guides-reports-and-whitepapers/2018/october/1/global-energy-game-changers-block-chain-in-the-energy-sector.

[19] See https://www.ogauthority.co.uk/news-publications/news/2019/the-oil-and-gas-authority-launches-one-of-the-largest-ever-public-data-releases/.

[20] See https://www.woodmac.com/press-releases/digitalisation-in-us-lower-48/.

[21] There are various examples in the publication cited in note 19 above, but see also https://www.gazprom-neft.com/press-center/news/gazprom-neft-and-s7-airlines-become-the-first-companies-in-russia-to-move-to-blockchain-technology-i/.

[22] See https://www.sciencedaily.com/releases/2019/07/190711114846.htm.

[23] See https://www.climateliabilitynews.org/2019/12/23/climate-litigation-threat-financial-filings/.

, , , , , , ,

A smart carbon tax: the silver bullet for the (just) energy transition?

The “net zero” debate: UK General Election 2019 (and beyond)

Climate and energy issues are clearly very important to many voters, even if what the parties say on these issues may be unlikely ultimately to be a decisive factor in determining the outcome of the election.

, , , , ,

Read more »
The “net zero” debate: UK General Election 2019 (and beyond)

First flesh on the bones of the new UK government’s energy policy?

The UK Department of Business, Energy & Industrial Strategy (BEIS) chose 9 November 2016 to release a series of long-awaited energy policy documents.  The substance of some of the announcements, which primarily cover subsidies for renewable electricity generation and the closure of the remaining coal-fired generating plants in England and Wales, was first outlined almost a year ago when Amber Rudd, the last Secretary of State for Energy and Climate Change, “re-set” energy policy in outline in a speech of 18 November 2016.  Broadly speaking, the documents indicate that little has changed in the UK government’s thinking on energy policy following the EU referendum and the formation of what is in many respects a new government under Theresa May.

Contracts for Difference

BEIS has confirmed that the next allocation process for contracts for difference (CfDs) for renewable generators will begin in April 2017, aiming to provide support for projects that will be delivered between 2021 and 2023. There will be no allocation of CfD budget for onshore wind or solar, consistent with the Government’s view that these are mature and/or politically undesirable technologies which should no longer receive subsidies.  The only technologies supported will be offshore wind, certain forms of biomass or waste-fuelled plant (advanced conversion technologies, anaerobic digestion, biomass with CHP) wave, tidal stream and geothermal.

The budget allocation is a total of £290 million for projects delivered in each of the delivery years covered: 2021/22 and 2022/23. Details are set out in a draft budget notice and accompanying note.  CfDs are awarded in a competitive auction process, the details of which are set out in an “Allocation Framework” (the one used for the last auction, in 2014/2015, can be found here).  It is likely that most, if not all, of the budget will be taken up by a small number of offshore wind projects, as the size of the projects which could be eligible to bid in the auction is large in comparison with the available budget.

Competition for CfDs will be fierce and Government should be able to show progress towards achieving its target of reducing support to £85/MWh for new offshore wind projects by 2026. For the 2017 auction, “administrative strike prices” have been set at levels designed to ensure that “the cheapest 19% of projects within each technology” can potentially compete successfully.  Behind this terse statement and the methodology it summarises lies an extensive BEIS analysis of Electricity Generation Costs, underpinned or verified by studies or peer reviews by Arup, Imperial College, NERA, Prof Anna Zalewska, Prof Derek Bunn, Leigh Fisher and Jacobs and EPRI.

The heat is on

Alongside the draft budget notice, BEIS has published two documents about CfD support for particular technologies.

One of these is a consultation that returns to the long-unanswered question of what to do about onshore wind on Scottish islands: should it be regarded as just another species of onshore wind (and therefore not to receive subsidy, in line with post-2015 Government policy), or does it face higher costs to a degree that merits a special place in the CfD scheme, as was suggested by the 2010-2015 Government?  It comes as no surprise that the Government favours the former view: another item to add to the list of points on which the UK and Scottish Governments do not see eye to eye.

The second document is a call for evidence on the currently CfD-eligible thermal renewable technologies of biomass or waste-fuelled technologies (including biomass conversions), and geothermal.  These raise a number of issues, on which the call for evidence takes no clear stance.

  • Is continued support for the fuelled technologies in particular consistent with getting “value for money” by focusing subsidies on the cheapest ways of decarbonising the power supply (except onshore wind and solar), given that (with the exception of biomass conversions), they have a relatively high levelised cost of electricity generation?
  • Can they be justified on the grounds that they are “despatchable” (and so do not impose the same burdens on the system as “variable” renewable generation like wind and solar)?  Or on the grounds that (where they incorporate combined heat and power), they contribute to the decarbonisation of heat, as well as of power generation – an area in which more progress needs to be made soon in order to meet our overall target for reducing greenhouse gas emissions under the Climate Change Act 2008 (and the Paris CoP 21 Agreement)?
  • Is the current relationship between the CfD and Renewable Heat Incentive support schemes the right one in this context?  Is a CfD for a CHP plant unbankable because of the risk of losing the heat offtaker?
  • Are all these technologies about to be overtaken as potential ways of decarbonising the heat sector on a large scale by other contenders such as hydrogen or heat pumps (and if so, is that a reason to abandon them as targets for CfD or other subsidy)?
  • Should more existing coal-fired power stations be subsidised to convert to burning huge quantities of wood pellets (is that really “sustainable” – and would such subsidies comply with current EU state aid rules, for as long as they or something like them apply in the UK)?

Against this background, the draft budget notice proposes to limit advanced conversion technologies, anaerobic digestion and biomass with CHP to 150MW of support in the next CfD auction.

Kicking the coal habit

Finally, BEIS is consulting on the best way to “regulate the closure of unabated coal to provide greater market certainty for investors in the generation capacity that is to replace coal stations as they close, such as new gas stations”.  The consultation needs to be read alongside BEIS’s latest Fossil Fuel Price Projections (with supporting analysis by Wood Mackenzie).  These set out low, central and high case estimates of coal, oil and gas prices going forward to 2040.  BEIS has significantly reduced its estimates for all three fuels under all three cases as compared with those in its 2015 Projections.

We are talking here about eight generating stations, which between them can produce 13.9GW. Their share of GB electricity supply tends to fluctuate with the relative prices of coal and gas.  Most are over 40 years old.  All can only survive by taking steps to comply with the limits on SOx, NOx and dust prescribed by the EU Industrial Emissions Directive – at least for as long as the UK is within the EU.

The Government’s difficulty is how to ensure that these plants close (for decarbonisation purposes), but on a timescale and in circumstances that ensure that the contribution that they make to security of electricity supply is replaced without a gap by e.g. new gas-fired plant, of which so little has recently been built. BEIS evidently hopes that by the time this consultation finishes on 1 February 2017, the results of next month’s four-year ahead Capacity Market auction will have seen a significant amount of new large-scale gas fired power projects being awarded capacity agreements at prices that make them viable (when taken together with expectations of lower-for-longer gas prices).

Although BEIS professes confidence in the changes that it has made to the rules and market parameters for the next Capacity Market auctions, one cannot help but wonder how convinced Ministers are that the 2016 auctions will succeed in this respect where those of 2014 and 2015 failed.  Because from one point of view, if the Capacity Market does result in new large gas-fired projects with capacity agreements, and gas prices remain low, the market should simply replace the existing coal-fired plants – which, as the consultation points out, aren’t even as flexible as modern gas-fired plant.  Maybe if a newly inaugurated President Trump pushes ahead with his plans to revive the use of coal in the US, higher coal prices will help accelerate the closure of some of our remaining coal-fired plants: BEIS calculates that with relatively low coal prices and no Government intervention, they could run until 2030 or beyond.

So how will Government make the plants close? Two options are proposed.  One would be to require them to retrofit carbon capture and storage (CCS), the other would be to require them to comply with the emissions performance standard (EPS) that was set in the Energy Act 2013 for new fossil-fuelled plant with a view to ensuring that no new coal plant was commissioned.  Neither path is entirely straightforward.  As it seems unlikely that operators would invest the kinds of sums associated with CCS on such old plant, there must be a risk that in trying to make CCS a genuine alternative to complete closure, regulations could end up allowing operators to run a significant amount of capacity without CCS whilst taking only limited action to develop CCS capacity.  With the EPS approach, there would be some tricky questions to resolve around biomass co-firing, as well as biomass conversion, if that were to remain an eligible CfD technology and budget were to be allocated to it.

When it comes to consider how to ensure that coal closure does not involve a “cliff-edge” effect, the consultation seems to run out of steam a bit: having mentioned the possibility of limiting running hours or emissions, either on a per plant basis or across the whole sector, BEIS says simply that it would “welcome any views on whether a constraint [on coal generation prior to closure] would be beneficial and, if so, any ideas on the possible profile and design”.

What next?

Nothing stands still.  The period of these consultations / calls for evidence, and the next Capacity Market auctions, overlaps with other processes.  Over the next few months, the Government is scheduled to produce over-arching plans or strategies in a number of areas that overlap with some of the questions posed in these documents.  It will also continue to develop its strategy for Brexit negotiations with the EU; and the European Commission will publish more of its proposals on Energy Union (including new rules on renewables, market operation and national climate and energy plans).

The documents state more than once that while the UK is an EU Member State, it will “continue to negotiate, implement and apply” EU legislation. But – at least in relation to coal closure – the Government is trying to make policy here for the 2020s.  By that time, it presumably hopes, it will no longer be constrained by EU law.  It remains to be seen how Brexit will affect the participation of our remaining coal-fired plants in the EU Emissions Trading System, which is at present a significant feature of the economics of such plant.  In the short term, the coal consultation points to an announcement in the Chancellor’s 2016 Autumn Statement (23 November) of the “future trajectory beyond 2021” of the UK’s own “carbon tax”, the carbon price support rate of the climate change levy.

After a period in which we have been relatively starved of substantive energy policy announcements, things are starting to move quite fast, and decisions taken by Government over the next few months could have significant medium-to-long-term consequences for UK energy and climate change policy.

, , , , , , , , , , , , ,

First flesh on the bones of the new UK government’s energy policy?